【双语频道】ONOS:IP Optical Use Case Demo

本视频来自AT&T工程师Tom Taufiq的讲解,主要给大家演示SDN和ONOS如何解决运营商网络面临的多层业务管理问题。

Hello everyone, I'm Tom Taufiq from AT&T. Today we will demonstrate how SDN and ONOS can help address the challenges of managing multi-layer service provider networks.
大家好,我是AT&T的Tom Taufiq,今天我们将给大家演示SDN和ONOS如何解决运营商网络面临的多层业务管理问题

Today's service provider networks are complex and multi-layered in nature.
当今的运营商网络本质上是复杂的和分层的

Each of these layers, including packet and optical, is provisioned and managed independently. 一个网络通常包含两层:IP层和光层,这两层网络单独部署,独立运维

Provisioning and adding new service or bandwidth could require order of days, if not months.
部署新业务或增加带宽可能需要几天甚至几个月的时间

Since packet and optical networks are managed independently, each one of them has to be over provisioned to deal with traffic anomalies and failures. This leads to lack of service agility and is a significant source of CapEx and OpEx overhead for the network operator.
由于IP网络和光网络独立运维,各自都需要冗余配置来应对流量异常和网络故障,导致业务缺乏灵活性、CapEx和OpEx居高不下

A converged SDN-centric plane for packet and optical networks can help address all of these inefficiencies.
基于SDN的IP+光融合平面可以解决上述问题

Service providers can optimize across packet and optical layers, in real time, for availability and economics thereby reducing overprovisioning.
运营商可以实时对IP网络和光网络进行跨层优化,提高网络的可用性和经济性,减少冗余的设备

They can add capacity based on traffic and other considerations, in minutes instead of days or months.
运营商可以出于流量或其他考虑对业务或网络进行扩容,扩容时间从之前的几天甚至几个月缩短至几分钟

Failures at both packet and optical layers can be handled quickly and efficiently. With this approach, traffic can be seamlessly rerouted to the most optimal alternate path.
IP层和光层故障均可快速定位,高效处理,利用IP+光融合控制平面,我们可以快速把流量重路由到最优的备用路径

Converged control plane not only makes network efficient, but also enables services to be created and deployed on these networks in an agile manner.
融合控制平面不仅可以提升网络效率,同时也让新业务创建和部署变得更加敏捷

Our goal today is to demonstrate the proof of concept, multi-layer SDN control with ONOS. In this demo, we will demonstrate the following: provisioning of bandwidth on demand between data centers, automated handling of failures, and seamless recovery.
我们今天的目标是进行概念验证演示,通过ONOS进行多层SDN控制,演示内容包括数据中心之间带宽按需自动发放、自动故障处理、无缝恢复

My teammate at ON.Lab, Praseed, from Fujitsu, will now demonstrate this use case.
接下来有请我ON.Lab的队友,来自富士通的Praseed,进行用例演示

Hi, I'm Praseed from Fujitsu. Today I will demonstrate how ONOS can control both packet and optical layers, and how optical layer can react to packet layer requests and dynamics.
大家好,我是富士通的Praseed,接下来我会向大家演示ONOS如何实现对IP层和光层的控制以及光层如何应对来自IP层的需求和变化

I would like to start the demo with an overview of the demo topology.
首先我们先来了解一下本次演示所用的网络拓扑

The demo topology comprises of packet and optical switches. There are hosts H1 through H6, which represents hosts in a data center.
该拓扑同时包含IP层交换机和光层交换机,H1至H6代表位于同一个数据中心的主机

The data path elements for packet nodes and optical nodes are emulated. The packet nodes are emulated using OVS switches and optical nodes are emulated using LINC-OE.
数据传输路径上的IP节点和光节点都是模拟出来的,OVS交换机模拟IP节点,LINC-OE模拟光节点

A customer could use a portal to request for bandwidth by specifying the endpoints and criteria.
用户可以通过门户网站指定端点和约束条件,下发带宽请求

When the request reaches ONOS, ONOS PC will traverse the underlying transport network, find a path based on criteria specified, and creates a circuit connection.
ONOS收到请求后,ONOS PC会遍历底层传输网络,找到符合指定约束的路径,并创建一个网络连接

This establishes a packet link being created between the switches connected to data centers. Now the hosts are able to pass traffic.
这样一条IP链路就在连接数据中心的交换机之间建立起来了,现在我们可以看到,主机流量已经通了

We then introduce a break in the network, which will be picked up by ONOS. ONOS will find an alternate path based on original criteria specified by the user. Packet layer will be unaware of this change in path.
当光层网络发生故障时,ONOS在检测到故障后会自动基于用户之前指定的约束条件找到一条备用路径,IP层不会感知这一路径变化

Let me now go to the demo.
现在让我们回到之前的拓扑页面

What you see is a topology, which shows packet and optical devices.
大家现在看到的拓扑同时包含IP设备和光设备

If we want to view only the optical plane, we can select it here. To go to packet plane, you can select it here. Or to go back to both IP and optical, we select it here. Alternatively, for a better perspective on the packet and optical plane and connectivity, we can select the oblique view.
如果只需要查看光层,可以点这里;如果想要转到IP层,可以点这里;如果需要同时查看IP层和光层,可以点这里;如果想更好地了解IP层与光层之间的连接性,可以选择斜视图

As you see, there is no direct link between packet nodes.
我们可以看到,IP节点之间不存在直连链路

Let me create a request from SFO location to JFK. We will make this request using ONOS UI.
现在我来创建一个从SFO到JFK的建连请求,我通过ONOS UI来创建这一请求

ONOS on receiving this request sets up optical path between packet nodes using an internal path computation engine.
ONOS收到请求后,通过内部路径计算引擎计算出IP节点之间的光路径并打通该光路径

You should see a packet link created shown in the UI in orange color. We can also see how the path is realized at optical layer shown in the UI in purple color.
大家可以看到,UI界面上新增了一条橙色的IP链路,该IP链路对应的光路径在UI界面上显示为紫色

You should also see the ping traffic going between these two locations to see the connectivity.
我们可以通过ping报文的传输情况来了解这两点之间的连通性

Let us create some more requests. This time we will use a bandwidth calendaring application to schedule a request.
现在让我们来创建更多请求,这一次,我们通过一个带宽日历应用来下发请求

We will set up a request between nodes connected to hosts 10.2 and 10.6 by specifying the endpoints. We could also specify constraints for the connection, which would be used by ONOS PC to compute path.
我们以指定端点的方式下发一个建连请求,请求在连接主机10.0.0.2和10.0.0.6的节点之间建立连接,同时我们还可以指定一些约束条件,ONOS PC在计算路径时会遵循这些约束条件

If you switch to ONOS UI, there is still no packet link between these nodes.
切换到ONOS UI界面后,我们会发现节点之间还没有建立IP链路

Let us run a ping between these locations to check connectivity.
现在让我们来执行一个ping操作,检查这两点之间的连通性

Let us switch back to the calendaring app to see the status of the request.
现在让我们切换回带宽日历应用界面,查看请求的状态

You should see that status is active.
大家可以看到,该请求处于激活状态

Let us go back and check the status in ONOS UI.
让我们再回到ONOS UI界面,查看该请求的状态

You can see a new packet link created and also the ping response between the hosts connected at these locations.
大家可以看到一个新的IP链路已经创建,连接到这些位置的主机之间可以ping通

Now let us create some failures along the traffic path. I'll bring down an optical link between these two locations. There are seven flows egressing from this port on the link.
现在我们一起来模拟传输路径故障,我把这两个位置之间的光纤链路断开,从这个端口发出的七条流之前沿该链路传输

As you see, the link between the two locations is inactive and the flows are rerouted to a new link. And if you look at the ping traffic, we will notice very few or no packets loss.
现在大家可以看到,这两个位置之间的链路处于去激活状态,流量被重路由到一条新的链路,Ping报文很少丢包,甚至没有丢包

I'll now hand over to Tom.
现在有请Tom

Today we showed how ONOS can be used to manage both packet and optical networks.
今天,我们演示了ONOS如何同时管理IP和光网络

Converged control of packet and optical networks will truly enable service providers to make these networks more efficient. Most important of all, this will bring agility and innovation to these networks.
IP+光融合控制大大提升了运营商网络的效率,更重要的是,IP+光融合控制极大地促进了网络敏捷创新

You can learn more about multi-layer SDN control with ONOS at onosproject.org.
欲了解更多关于ONOS SDN多层控制的信息,请访问onosproject.org

Thanks for watching.
感谢收看!

下面给大家带来完整视频内容,希望你能和SDNLAB双语君在技术学习的过程中一起提升英语能力。

号外号外,SDNLAB译者计划在火热招募中
成为译者的好处:

  • 优质的英文原材料,最直接的提升英语能力
  • 提高社区影响力,国内极具影响力的SDN交流平台
  • 最优的内容传播途径,认可才是硬道理
  • 社区福利免费拿,一手的学习资料
  • 分享推动SDN发展,提供国内新鲜的技术资料

什么样的人才能成为译者?
热爱分享、热爱社区;喜爱SDN等网络创新技术;

怎样成为译者:
填写下面的表格吧,微信请阅读原文哦:http://form.mikecrm.com/ItmbOc

编译类仅出于传递更多信息之目的,系对海外相关站点最新信息的翻译稿,仅供参考,不代表证实其描述或赞同其观点,投资者据此操作,风险自担;翻译质量问题请指正。


  • 本站原创文章仅代表作者观点,不代表SDNLAB立场。所有原创内容版权均属SDNLAB,欢迎大家转发分享。但未经授权,严禁任何媒体(平面媒体、网络媒体、自媒体等)以及微信公众号复制、转载、摘编或以其他方式进行使用,转载须注明来自 SDNLAB并附上本文链接。 本站中所有编译类文章仅用于学习和交流目的,编译工作遵照 CC 协议,如果有侵犯到您权益的地方,请及时联系我们。
  • 本文链接https://www.sdnlab.com/17883.html
分享到:
相关文章
条评论

登录后才可以评论

SDNLAB君 发表于16-09-28
0